
Authentication and
authorization in modern

JavaScript web applications

Brock Allen

brockallen@gmail.com

http://brockallen.com

@BrockLAllen

Outline

• Browser-based JavaScript applications and threats

• Approaches to security

• Security protocols

• Application considerations

Styles of JavaScript browser-based apps

• Legacy/Mixed
• Mainly consists of server-side code (ASP.NET, MVC, etc.)

• Some client-side JavaScript making Ajax calls

• Using cookies for authentication

• Modern/SPA
• Server only serves static content

• All application logic and rendering client-side in JavaScript

• Calls to server APIs via Ajax

• Could use cookies or tokens for authentication

Threats against JavaScript apps

• Cross-site scripting (XSS)
• Injected JavaScript can control

page

• Mitigations
• HTTP-only cookies prevent

exfiltration

• Content security policy (CSP)
restricts sources and behavior of
code running on page

• Cross-site request forgery (CSRF)
• Websites making malicious

requests to your server endpoints

• Mitigations
• Anti-forgery tokens authenticate

app making request
• Easy to add for server-rendered apps

• Often not done for Ajax endpoints

• Same-site cookies scopes cookie
to calling origin

• Token based security

Server-side Application

CSRF attack

Browser

Tab/Process Tab/Process

login &
set authentication cookie

http://app.com http://app.com/delete/5

send authentication cookie

CSRF mitigation with anti-forgery tokens

• Add explicit “credential” on every request
• Supported with ASP.NET Core’s anti-forgery feature

[ValidateAntiForgeryToken]
Controller

render page &
anti-forgery cookie

<form>
<input type="hidden" value="anti-forgery token" />

</form>

<script>…</script>

post-back:
cookie + hidden field

Page

web api call:
cookie + header

CSRF mitigation with same-site cookies

• Browser only sends cookie from page from same origin
• Enabled by default for ASP.NET Core authentication cookies

• Decent browser support (as of 2019)

https://caniuse.com/#search=samesite

HTTP/1.1 200 OK
Set-Cookie: key=value; HttpOnly; SameSite=strict

Restrictions using cookies for APIs

• Same-site cookies is still new
• Some people still on older browsers

• API must have server-side code to issue cookie to browser
• Easy for legacy/mixed, more work for SPA/modern

• Application must be same origin as API
• Will your app always be the same domain as the API(s)?

• Browser-based app is only app that can call the API
• Will you ever want other apps to use the API?

Token based authentication

• Tokens are a different form of credential
• Typically use JSON web token (JWT)

• Sent as header to authenticate HTTP request

• Predates same-site cookies as a solution for CSRF

• Tokens help solve the architectural issues
• More than just browser-based apps can use tokens

• API is client agnostic

• No cookie management needed in API

• Can call APIs cross-domain

• SSO for users

OpenID Connect and OAuth 2.0

• Protocols for obtaining and using tokens

• Allows for authentication to client application
• With id_token

• Allows for securing server APIs
• With access_token

Client, token server, and API server

Token Server/Identity Provider

API Server

login &
obtain token(s)

use token

Protocol flows

• Flows define mechanics to obtain tokens in client
• Different based on type of app (e.g. server, mobile, SPA)

• Ongoing work in IETF to produce useful guidance
• https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

• SPA apps use authorization code flow (with PKCE)
• Previous guidance was to use implicit flow

Token server endpoints

Authorize
Endpoint

Token
Endpoint

Discovery
Endpoint

?

Discovery endpoint

• Contains discovery document JSON
• Metadata about token server to automate client app configuration

Authorization request

GET /authorize

?client_id=app1
&redirect_uri=https://app.com/cb.html
&response_type=code
&nonce=289…a23
&scope=openid profile email api1 api2
&code_challenge=x929…1921

Authentication

Authorization response

GET https://app.com/cb.html?code=238…823j

set SSO cookie

Token endpoint exchange

• Ajax request made to token endpoint to exchange code for tokens
• Using client id and code verifier

POST /token
client_id, code, code verifier

{
id_token: "xxae…988",
access_token: "xyz…123",
expires_in: 3600,
token_type: "Bearer"

}

Id token

• Contains user’s claims
• Format is JSON web token (JWT)

eyJhbGciOiJub25lIn0.eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMD.4MTkzODAsDQogImh0dHA6Ly9leGFt

Header Claims Signature

{
"typ": "JWT",
"alg": "RS256",
"x5t": "mj399j…"

}

{
"iss": "https://identityserver.io",
"exp": 1340819380,
"aud": "app1",
"nonce": "289347898934a23",

"sub": "182jmm199",
"email": "alice@alice.com",
"name": "Alice Smith",
"amr": ["pwd"],
"auth_time": 12340819300

}

Access token

• Application should store access token
• localStorage

• sessionStorage

• indexedDb

• Use access token to call APIs

Using access token to call APIs

• Access token passed as Authorization HTTP request header
• Using “Bearer” scheme

var xhr = new XMLHttpRequest();
xhr.onload = function () {

var user_profile = JSON.parse(xhr.response);
}

xhr.open("GET", "https://api.app.com/some_endpoint");
xhr.setRequestHeader("Authorization", "Bearer " + access_token);
xhr.send();

Validating access tokens at API

• ASP.NET Core provides JWT bearer authentication handler
• Populates HttpContext.User with claims from token

public void ConfigureServices(IServiceCollection services)
{

services.AddAuthentication("Bearer")
.AddJwtBearer("Bearer", options =>
{

options.Authority = "https://identityserver.io";
options.Audience = "your_api_identifier";

});
}

oidc-client

• JavaScript helper class that implements
OIDC and OAuth 2.0 protocols

• http://github.com/IdentityModel/oidc-client-js
• Also available via npm & bower

Access token expiration

• Access tokens have a fixed lifetime
• 1h, 10h, 1d, 30d, whatever

• Need a way to manage this lifetime
• Wait for 401 from API

• Renew prior to expiration

Renewing access tokens

• Unlike cookies, access tokens don't slide
• Must return to token server to obtain new access token

• Start from scratch
• Almost same as starting all over
• Don't want to lose the state in the app

• Popup window
• Better than starting over
• Somewhat intrusive

• Hidden iframe
• Nice tradeoff for usability

Logout

• Throw away tokens in client

• Signing out of OIDC OP
• Must make request to OP

• Post logout redirect
• Must pass redirect URL as
post_logout_redirect_uri

• Must pass original id token as
id_token_hint

Summary

• Need XSS and CSRF protection in browser-based JavaScript apps

• Can use same-site cookies for single domain apps and APIs

• Can use token based authentication for more complex scenarios

• Use OpenID Connect and OAuth 2.0 protocols to obtain tokens

